

The International Resource Panel: Best Science for Informed Policy Making

High-level Seminar on Responsible Management of Natural Resources for a Sustainable Africa Nairobi, 2-3 November 2013 www.unep.org/resourcepanel

Key findings on resource use and economic growth

Constant vear 2000 US\$

SE

PEAK OIL

New Oil discoveries have been declining since 1964

Note: World oil discovery over 10-year periods, by Association for the Study of Peak Oil and Gas.

Not Just Peak Oil... "Peak Many Things" In The Next 20 Years

- Food production
- Topsoil
- Phosphorous
- Fish
- Water supplies
- Uranium
- Some minerals copper, zinc and silver

World's Deserts Growing by 50 Thousand Sq Km per year

World Food Prices - FAO

FAO Food Price Index

* The real price index is the nominal price index deflated by the World Bank Manufactures Unit Value Index (MUV)

Sustainable Natural Resource Management: An Opportunity for Prosperity

International esource

People are at the Centre of Sustainable Natural Resource Management

y-axis: number of planet earths, x-axis: years

Human Welfare and Ecological Footprints compared

Using natural resources efficiently to derive maximum benefit

There are ways to **decouple environmental impacts** and resource use from **economic growth**...

... while avoiding burden shifting between countries, generations, and trade-offs between impact categories and life cycle stages.

A Science-Policy Interface for Sustainable Resource Management

- **International Resource Panel:**
- Launched in 2007
- Bridges science and policy
- Aims at Sustainable
 - use of natural resources
 - environmental impacts

What is the IRP?

International Resource Panel

- Scientists & Experts
- Studies Global Resource Use Issues
- Assesses Latest Research
- Hosted by UNEP

Objectives

Independent, authoritative advice for policy makers on the sustainable use of natural resources and environmental impacts over the full life cycle

Explore ways to Decouple Resource Use from Economic Wellbeing

International Resource Panel Structure

Scientific Panel Internationally recognized experts on sustainable resource management

Scientific assessments and advice, networks

UNEP Secretariat

Direction, procedures, support in development and implementation of assessments, outreach

Steering Committee

Governments and Civil Society Organizations

. .

Strategic guidance, political support, regional synergies

International Resource Panel Steering Committee

The Panel - IRP Working Groups

Decoupling	 decoupling environmental impacts and resource use from economic growth.
Cities	between urbanization trends and global material flows
Environmental Impacts	
of Products and Materials	 enviromental impacts of products and materials and definition of priorities in use for impact minimization
Wateriais	
Land and Soils	 global land use and soll management
Global Metal Flows	 global flows and reuse/recycling activities of metals
Water	 water productivity and accounting

International Resource Panel Published Reports

www. http://www.unep.org/resourcepanel/

Report showed that only "relative decoupling" is happening. But the global resource and climate situation needs absolute decoupling.

Decoupling

Our first (2011)

A new Report on City-Level Decoupling shows cities are the big resource eaters but also have best qualification to reduce that.

An earlier report on priorities

Shows that most impacts are caused

- Agriculture and food consumption
- Activities using fossil fuels
- Housing and transport.

Decoupling can mean less consumption, cleaner production, and indeed rise in resource productivity.

Panel

Also our multi-Reports "Metals Saga" relates to decoupling. When discovering that specialty metals are hardly being recycled, we looked at the challenge of how to increasing recycling rates.

New, 2013 Report on Metal Recycling Opportunities, Limits, Infrastructure.

Distinguish between bulk and specialty metals

For recovering specialty metals, you have to start from the design!

Another new Metals Report, on Environmental Risks and Challenges ...

.. shows that impacts on land, water, air, and biodiversity stem from all stages of metals mining, processing, and handling. But everywhere you can reduce risks!

And the sequel to Decoupling 1 is planned to appear in 2014.

International Resource Panel What comes next?

A constructive dialogue between scientists and policy makers

Recycling of Many Metals < 1%!

н	The majority of specialty										He						
3 Li Lithium	4 Be Beryllium		metals have recycling rates lower than 1%!									5 B Boron	° С	7 N	8 O	, F	10
יי Na	12 Mg Magne- sium												14 Si	15 P	16 S	17 Cl	18 A I
19 K	20 Ca	21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manga- nese	26 Fe Iron	27 Co Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Ga Gallium	32 Ge Germani- um	33 As Arsenic	34 Se Selenium	35 Br	36 8
37 Rb	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybde- num	43 Tc	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 	54 X
55 Cs	56 Ba Barium	57-71	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au Gold	80 Hg Mercury	81 Tl Thallium	82 Pb Lead	83 Bi Bismut	84 Po	85 At	86 F
87 Fr	® Ra	89-103	104 Rf	105 Db	106 Sg	107 Sg	¹⁰⁸ Hs	109 Mt	110 Ds	nn Rg	112 Uub	113 Uut	114 Uug	115 Uup	116 Uuh	117 Uus	11 L
0 % 5 %		57 La Lantha- num	58 Ce Cerium	59 Pr Praseo- dymium	60 Nd Neodymi- um	₀1 Pm	62 Sm Samarium	63 Eu Europium	64 Gd Gadolini- um	65 Tb Terbium	66 Dy Dysprosi- um	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Renewable Energy

Decentralized Systems

Objective: Decouple Impact from Growth

2005 ce: Klaus Kögler, European Commission, Directorate General for the **200** for th
Relative decoupling: GDP grows faster than resource use. But resource use still grows.

Ores and industrial minerals

Source: Krausmann et al., 2009; based on SEC Database 'Srowth in global materials use, GDP and population during the 20th century', Version 1.0 (June 2009); http://uni-klu.ac.at/soce.c/inhalt/3133.htm)

1

The Global South typically wants relative decoupling, and the North should aim at absolute decoupling.

The classical origin of the decoupling idea: The Kuznets-curve of local pollution.

GDP goes with Domestic Material Consumption (DMC)

Creating the Kuznets Curve for resource use means intentional increase of resource productivity

... and assist developing countries to tunnel through

Similarly, GDP goes with CO₂ intensity.

Source: Energy Information Administration, USA, 2006

So we have to create a Kuznets Curve of decarbonization.

And then help poorer countries tunneling through.

Pathways to Decoupling

- Efficiency
- Productivity
- Conservation
- Miniaturize
- Dematerialize
- Share Underused Assets

Level of Change Cost **Deep Change** Incremental Change **Structural** Transformation **BAU**

Why absolute decoupling? Because of the footprints dilemma

If 7 b people had US size footprints, we would need 5 planets Earth

If we manage to have fivefold increase of resource productivity, one planet would do!

This gives an indication, that we need (at least) a five fold decoupling of wellbeing from resource consumption!

The second report on Decoupling will distinguish between

1. Decoupling by maturation (overcoming initial clumsiness, saturating infrastructures)

2. Decoupling by trade (problem shifting)

3. Decoupling by intentional increase of resource productivity

(To be published and exp

Resource

Intentional increase of resource productivity can lead very far!

To visualize this, let us ask a question from physics.

Imagine a **bucket of water** of 10 kg weight How many kilowattlift it from sea level **Development Alternatives**

The answer is stunning: One quarter of a kilowatthour!

(knowing that one wattsecond is one Joule or one Newton-meter; ¹/₄ kwh is 900.000 watt-seconds)

Development Alternatives

meaning that a five-fold increase in resource productivity will just be the early beginning of a huge story.

A few Factor Five examples ...

Superefficient cars

"Passive houses": a factor of ten more heat efficient

From 12 lane highways to bicycle centered cities

Atlanta

Copenhagen

Atlanta is 25 times larger than Barcelona, but has a smaller population

LED replacing incandescent bulbs: a factor of 10

From Portland cement to geopolymer cement (e.g. fly ashes from coal power plants).

Energy efficiency

Steel Production & Maintenance

Development Alternatives

- **EAF** Production Method
- Net Shape Casting
- Heat & Power Recovery
- Feedstock Change
- Fuel Switching
- Energy Monitoring & Management Systems
- Preventative Maintenance

Standard

> Factor 5

From using water once to purifying (recycling) it

Development Alternatives

From flood irrigation to advanced drip irrigation

Another bold approach: Building the Blue Economy

10 years, 100 innovations, 100 million jobs

HOW TO DO IT I MONEY

by Gunter Pauli. The motto is mostly cascades of resource use; and job creation! Most of his examples are from developing countries Development Alternatives

Systemic Issues

Basic Needs AND Environment

Systemic Problems

Production Systems AND Consumption Patterns

Systemic Solutions

Sustainable Jobs AND Sustained Resources

Global Ramifications

Northern Concerns AND Southern Imperatives

Urgent Need for

Charter or even Convention on Global Management of Natural Resources

= SCP